Power Law Distributions in Class Relationships

Richard Wheeldon and Steve Counsell
School of Computer Science and Information Systems
Birkbeck College, University of London
London WCI1E 7HX, U.K.
{richard, steve}@dcs.bbk.ac.uk

April 25, 2003

Abstract

Power law distributions have been found in many nat-
ural and social phenomena, and more recently in the
source code and run-time characteristics of Object-
Oriented (OO) systems. A power law implies that
small values are extremely common, whereas large
values are extremely rare. In this paper, we identify
twelve new power laws relating to the static graph
structures of Java programs. The graph structures
analyzed represented different forms of OO coupling,
namely, inheritance, aggregation, interface, parame-
ter type and return type. Identification of these new
laws provide the basis for predicting likely features of
classes in future developments. The research in this
paper ties together work in object-based coupling and
World Wide Web structures.

1 Introduction

Power law distributions have been found in many nat-
ural and social phenomena. A power law implies that
small values are extremely common, whereas large
values are extremely rare. For example, incomes,
earthquake strengths, city sizes and word frequency
all follow power law distributions - there are many
small tremors, but only a few large earthquakes. The
power law distribution is strongly connected with
Zipfs-law and the Pareto distribution, often known

as the 80:20 rule [1].

We would expect a power law to apply to the size of
classes in object-oriented systems. Size in this sense
is defined in terms of the number of methods, con-
structors and other class features. This hypothesis
is partially supported by previous research into key
classes [9].

The existence of a power law distribution in a network
implies a scale-free behaviour. This means that the
network lacks a “characteristic length scale” so that,
like fractals, when suitably magnified, small bits of
it resemble the whole. Whichever range of values
is examined, the proportion of small to large values
remains the same [1].

Recently, there has been a great deal of interest in
the power laws visible in the structure of the World
Wide Web [2]. These include the number pages on
web sites, the number of links to a given website, the
PageRank ! values of nodes and the frequency with
which users visit pages [15, 2].

The indegrees and outdegrees of individual web pages
are also subject to power law distibutions [8]. In a
Web context, indegree refers to number of pages link-
ing to a given page and outdegree refers to the num-
ber of pages referenced from a given page. During the
development of our Autodoc system for assisted navi-
gation of program documentation [19], we found that

1 The ranking metric used by Google [14]

the pages in the Javadocs were subject to the same
laws. We thus hypothesized that the relationships
were due to power law distributions in the underly-
ing code structure.

Our motivation for the research described in this pa-
per is to discover patterns and relationships which
can explain the structure of source code at a low
level of abstraction. Identifying such patterns allows
us to predict, by extrapolation, the consequences of
developing larger and more complex software. For
example, we could predict how many classes might
contain greater than a hundred methods in a set of
classes ten times larger than the Java Developers Kit
(JDK). Alternatively, we could predict the maximum
number of constructors of any class in that system.
This may have implications for software maintenance
and comprehensibility in terms of time spent and ef-
fort expended [12].

A further motivation is to enable models of code
development that will allow developers to create
synthetic code bases containing large numbers of
computer-generated classes. For example, given an
appropriate means of generating synthetic data, a de-
veloper could generate a data set of a much larger
number of classes. This would enable them to test
the consequences of developing a large system before
development begins.

Finally, our work has implications for the graph
traversal algorithms used in reachability analysis and
garbage collection. Just as internet networks are ro-
bust against random removal of nodes [4], it is likely
that random removal of classes will have little effect
on the proportion of code which can be reached and
thus executed.

The remainder of this paper is organized as follows.
Section 2 describes related work in discovering power
law distributions and scale-free characteristics of soft-
ware. In section 3 we describe our analysis techniques
and present the results in section 4. Section 5 gives
our conclusions and ideas for future research.

2 Related Work

There has been substantial work on power law distri-
butions in natural phenomena and over recent years,
in the evolution of the web. Only recently has at-
tention turned to the power law distributions found
in program code and, in particular, those relating to
Java software.

O’Donoghue et al. have performed a run-time analy-
sis of Java bytecode sequences obtained using a cus-
tomized version of the Kaffe JVM [13]. Their exper-
iments showed that the frequencies with which con-
secutive pairs of instructions are interpreted by the
virtual machine follows a power law.

Potanin et al. have conducted experiments using a
query-based analysis tool called Fox, which is an en-
hanced version of Bill Foote’s Heap Analysis Tool
(HAT). Their research has confirmed power laws in
the indegree and outdegrees of the run-time object
graphs of several programs [16, 17].

Valverde et al. have shown that the indegree and
outdegrees of nodes in a network of class diagrams
also follow power laws, leading to a scale-free network
topology similar to that of the Web [18]. Since these
diagrams have a one-to-one mapping with the source
code structure, the implication is that these laws are
a feature of object-oriented program code.

A major feature of the work in this paper is the analy-
sis of different coupling types. A commonly-held view
in software engineering is that there is a link between
complexity in software and the understandability of
that software. The more coupling in a system, the
more complex the system. Too much coupling is in-
dicative of a poorly thought out design and there is
evidence to suggest that it can lead to more fault-
prone software [7, 10]. The large number of different
ways of writing OO code means that accurately cap-
turing, categorising and analyzing the different forms
of coupling is a difficult task to undertake. A com-
prehensive framework for measuring coupling in OO
systems is described by Briand et al [6].

Our research shows that even when the network of
classes is decomposed by coupling type, power laws

still prevail. This has lead to the identification of
twelve distinct power law distributions.

3 Analysis Techniques

As part of this research, a system called AutoCode
has been developed for indexing Java source code.
AutoCode works by using a custom doclet which ex-
tends the Javadoc program and allows easy access to
the code structure. We used the AutoCode system
to generate graphs for each of five coupling types -
Inheritance, Interface, Aggregation, Parameter Type
and Return Type. An illustration of how these graphs
can be derived from source code can be seen in fig-
ure 1. To identify the power laws, we then performed
statistical operations on these five graphs. With the
exception of inheritance, we need to consider the re-
lationships from two perspectives. For example, from
the perspective of the interface and of the implement-
ing class. We do not need to consider the number
of superclasses because Java classes only ever have
one superclass. The number of methods, construc-
tors and fields in each class were also studied.

Data was collected from three large Java systems:

1. The core Java class libraries shipped with the
Java Developers Kit (JDK) provide implemen-
tations of common functions required for many
programs. This contains 1 400 000 lines of code
spread over 6 000 classes.

2. Apache Antis a Java-based build tool. It be-
haves in a similar way to make but uses XML-
based configuration files, which define various
tasks to be executed. The source code for
Apache Ant contains 145 000 lines of code spread
over 500 classes, whilst

3. Tomcat is the servlet container used in the offi-
cial reference implementation for Java Servlets
and JavaServer Pages. The source code for
Jakarta Tomcat contains 150 000 lines spread
over 370 classes.

To identify the power laws we perform linear regres-
sion on log-log data plots. The number of occur-
rences, y, of a value of magnitude z is given by the
equation y = Czx~% which implies that log(y) =
log(C) — alog(x). Hence, the power law can easily
be identified by a straight line with gradient —a on a
log-log plot. Because of significant clustering of data
points near the z-axis, regression on these plots leads
to skewed results. To prevent this, the values must be
grouped into buckets of exponentially increasing size
[2]. The logarithm of the frequency is plotted against
the logarithm of the mid-point of each bucket. From
the subsequent regression a more accurate exponent
value, a, can be obtained than if all the original data
points are considered. It is this value which allows
us to predict the likely features of future systems. A
low value value of the exponent signifies a tendency
towards a less skewed distribution.

4 Results

4.1 Methods, Fields and Constructors

The majority of this study concerns coupling rela-
tionships between classes. However, three power laws
were identified without type information. These re-
late to the fundamental building blocks of classes -
the number of fields in each class, the number of
methods in each class and the number of class con-
structors. Figure 2 shows log-log plots highlighting
each of these relationships.

For the distribution of the number of methods, the
exponents are 1.202, 1.013 and 0.766 for JDK, Ant
and Tomcat, respectively. This implies that in the
JDK there is a higher proportion of classes with very
few methods when compared with the other two sys-
tems. This might imply fewer key classes in this sys-
tem. For the distribution of the number of fields,
the exponents are 0.912, 1.124 and 0.931 for JDK,
Ant and Tomcat, respectively. The difference in the
magnitude of the exponents would indicate no strong
relationship between the the number of methods and
the number of fields. It could be imagined that a large

interface StringReader {
String readString();
}

abstract class CharSequence {
int getLength();
append(String addme);
}

class StringFileReader
implements StringReader {
String lastString;
StringFileReader(String filename) { }
String readString() { }
}

class String extends CharSequence({
append(String addme);
}

StringReader
StringFileReader

Interface

CharSequence

Inheritance

StringFileReader

Aggregation

Parameter Type

Figure 1: Tllustration of coupling types and their graph representations.

number of fields implies a larger number of methods
to operate on those fields. Based upon our obvser-
vation, we hypothesize that it is infeasible to predict
the number of methods from the number of fields
and vice-versa. This hypothesis is supported by cor-
relations between the number of methods, fields and
constructors (figure 3). The correlation matrix in fig-
ure 4 shows that no strong correlation exists between
any of these measures.

For the distribution of the number of constructors,
the exponents are 3.058, 3.363 and 2.949 for JDK,
Ant and Tomcat, respectively. This implies that
classes with a large number of constructors are rarely
found in systems of this scale. For example, the JDK
system contains only three classes with more than
ten constructors. Previous work into refactoring of
constructors found similar evidence for five medium-
sized Java systems [12]. Only one class was found
to have ten constructors. This class was part of the
Swing library.

Methods Fields Constructors
Methods 1
Fields 0.0506 1
Constructors 0.157 0.010 1
Figure 4: Correlation matrix for class members in
the JDK

4.2 Coupling Power-Laws

The frequency with which classes are used as super-
classes to other classes can be calculated by exam-
ining the distribution of outlinks in the superclass-
subclass graph. Figure 5 shows a bucketed log-log
plot of the number of descendants of the classes in the
JDK. The results show that the distribution follows
a power law with exponent 0.906. The exponents
for Apache Ant and Jakarta Tomcat are 0.810 and
1.310, respectively. The high value for Tomcat im-
plies that more classes in that system have relatively
few descendants, whilst a small number of classes are
extended by many descendants. In other words, the
functionality of the system is distributed more evenly

than in the other two systems. In contrast, for the
Ant system, much of the functionality is contained in
subclasses of key classes such as Task and BasePa-
ramFilterReader. Hence the functionality is more
concentrated in fewer classes in this system.

og(Frear

y=-0.9064x + 46803
RP=07866

Log(Number o Subcasses)

Figure 5: Log-Log plot showing a power law distri-
bution in the number of subclasses of each class in
the JDK class library.

By using the same techniques we can show that the
distribution of the number of classes implementing an
interface follows a power law, with exponents 1.130,
1.118 and 1.636 for JDK, Ant and Tomcat, respec-
tively. This makes sense if we consider the use of in-
terfaces as a surrogate for multiple inheritance. We
would expect a similar distribution for interface im-
plementations as for subclasses.

The distribution in the number of interfaces imple-
mented by a class also follows a power law, with a
much higher exponent of 3.663, as can be seen from
figure 6. This exponent was calculated for the JDK.
Insufficient data was available to calculate the expo-
nents for the other two systems. This result can be
explained by virtue of very few classes implementing
a large number of interfaces. Those that do imple-
ment a large number of interfaces tend to delegate
the responsibility for the methods of these interfaces
to members of the same interface.

S

S

Log(Frequency)

. y=-09117x + 56178
. R®=08613

Log(Frequency)

y=-1.2015x +7.6458
R®=08564

Figure 2: Log-log plots showing power law distributions in the number of (a) fields, (b) methods and (c)

1 2 3 4
Log(Number of Fields)

(a) Fields

2 3 4
Log(Number of Methods)

(b) Methods

9

Log(Frequency)

¥ =-3.0577x + 8.3606
R?=09632

1 15
Log(Number of Constructors)

(c) Constructors

constructors of classes in the JDK class libraries.

Log(Constructors)
Log(Constructors)

o 05 1 15 2 25 3 o 05 1 15 2 25 3
Log(Fields) Log(Methods)

(a) Fields vs. Constructors (b) Methods vs. Constructors

3

Log(Fields)

o 05 1 15 2 25 3
Log(Methods)

(c) Methods vs. Fields

Figure 3: Log-log plots showing the relationships between (a) the number of fields and the number of
constructors, (b) the number of methods and the number of constructors and (¢) the number of methods
and the number of fields for classes in the JDK.

0
§=-36633¢+ 78816
A= 09601

‘ N
N

0 05 1 15 2 25
Log(Number of implemented Interfaces)

Figure 6: Log-Log plot showing a power law distri-
bution in the number of interfaces implemented by
classes in the JDK class library.

Two further power law distributions can be seen in
the relationship between classes as member variables.
The first, a power law distribution in the number of
other classes referenced as member variables within
a given class. For example, in figure 1, StringFil-
eReader references one class, String, via the field
lastString. The exponents of the distributions are
0.876, 1.267 and 1.152 for JDK, Ant and Tomcat,
respectively. The low value for JDK reflects a com-
paratively uniform distribution of coupling via aggre-
gation in this system. One explanation for the low
JDK value may be that the roles of various pack-
ages in the system do not overlap and hence there
are multiple focal points for aggregation, as opposed
to a centralized structure.

The second distribution is in the number of classes
which reference a given class as a member variable.
For example, in figure 1, String is referenced by one
class, StringFileReader. The exponents of these
distributions are 1.091, 1.371 and 1.934 for JDK,
Ant and Tomcat, respectively. Interestingly the JDK
again has the lowest exponent value supporting the
previous hypothesis about multiple focal points for
aggregation.

Both of these power-laws can be seen from the plots
in figure 7. It is noticable that the values for the
first distribution are lower than the corresponding
values for the second. This can be explained by the
tendency in object-oriented code for many classes to
be grouped together as members of another class. In
contrast, it is comparatively rare for a class to be
referenced as a member in many classes.

Four more class features were analyzed for power law
distributions, namely the indegrees and outdegrees
induced by parameter types and return types for each
of the three systems. All showed scale-free topology.
The Ant system has comparatively high values for
all the exponents in these relationship. Inspection
of the classes in this system and subsequent analysis
revealed no strong correlation between usage of re-
turn types and parameters. This could be considered
a suprising result, since we might expect parameters
and return types to be linked. No obvious explana-
tion could be found for the differences in exponents
between the systems.

The exponent values for all three systems can be
found in figures 8, 9 and 10. The 72 values denote
Pearson product-moment correlation. The high 72
values for JDK reflect the larger number of classes
in this system. As a result, we would expect more
consistency in the data. The r? values are relatively
low but still support the theory.

5 Conclusions and Future

Work

In this paper we have illustrated that power-law dis-
tributions exist in object-oriented class relationships.
In particular, those related to coupling. Twelve new
power-laws have been identified. The exponents of
these power laws are given for the JDK (figure 8),
Tomcat (figure 9) and Ant(figure 10). One conclu-
sion from this work is the belief that these regulari-
ties are common across all non-trivial object-oriented
programs.

Another conclusion is that the different types of cou-

Log(Frequency)

¥ =-0.8758x + 46531
R2= 08708

Log(Number of containing classes)

(a) Field members

Figure 7:

¥

\ ‘

y=-1.09130+52029
FF=08622

Lnghqu”y)
J

.

/

LogiFields classes)

(b) Containing classes

Log-Log plots showing power law distributions in (a) the number of classes referenced as field

variables and (b) in the number of classes which contain references to classes as field variables.

pling examined are independent. This finding contra-
dicts the hypothesis that high usage in one form of
coupling can be used to predict high usage in another
form.

The implications of these findings are that we can
use the data to predict the dimensions of future sys-
tems. This will allow us to estimate the complexity
of developing and maintaining those systems.

It is interesting to note that the exponents for Ant
and Tomecat rarely fall within the 95% confidence in-
tervals of the JDK. We believe that these exponents
are due to deeper properties of the collections. The
conclusion is that whilst there are common proper-
ties between these systems, each individual system
has its own unique characteristics.

Bieman and Murdock have already shown that there
is a large body of freely accessible source code avail-
able on the Web [5]. In terms of future work, it
would be interesting to verify these results using a
large crawl of such data. Assuming that these results
hold, a number of techniques can be bought to bear
to explain the phenomena.

In order to explain the power law in World Wide Web
graphs, new models for its growth and evolution have
emerged. The key to these models is a process known
as preferential attachment [3] in which pages which
have a high indegree are more likely to be referred
to by new links. This can be explained by consider-
ing a page with higher indegree as being more popu-
lar more important and better connected. It is thus
more likely to be visited by a user who may then
also choose to link to that page. Research is ongoing
to find methods to improve the model - for exam-
ple, by combining preferential and non-preferential
attachment [11]. Other future work will investigate
the accuracy with which these models can predict the
structure of program code.

References

[1] Lada A. Adamic. Zipf, power-laws, and pareto
- a ranking tutorial. Technical report, Internet
Ecologies Area, Xerox Palo Alto Research Cen-

Relationship Exponent | Lower 95% | Upper 95% r2
Number of Methods 1.202 0.972 1.431 | 0.856
Number of Fields 0.912 0.746 1.078 | 0.861
Number of Constructors 3.058 2.570 3.545 | 0.960
Subclasses 0.906 0.623 1.189 | 0.787
Implemented Interfaces 3.663 2.918 4.409 | 0.960
Interface Implementations 1.130 0.933 1.329 | 0.907
References to class as a member 0.876 0.682 1.069 | 0.871
Members of class type 1.091 0.875 1.307 | 0.862
References to class as a parameter 0.858 0.787 0.929 | 0.973
Parameter-type class references 1.183 1.050 1.316 | 0.948
References to class as return type 0.957 0.882 1.032 | 0.978
Methods returning classes 1.522 1.324 1.720 | 0.939
Figure 8: 95% confidence intervals for power law exponents in JDK.
Relationship Exponent | Lower 95% | Upper 95% r2
Number of Methods 0.766 0.564 0.968 | 0.768
Number of Fields 0.931 0.702 1.160 | 0.834
Number of Constructors 2.949 2.394 3.503 | 0.990
Subclasses 1.310 0.714 1.906 | 0.828
Interface Implementations 1.636 0.865 2.407 | 0.856
References to class as a member 1.152 1.629 0.675 | 0.853
Members of class type 1.934 1.432 2.037 | 0.970
References to class as a parameter 0.711 0.375 1.046 | 0.595
Parameter-type class references 1.191 0.842 1.540 | 0.793
References to class as return type 1.043 0.666 1.420 | 0.751
Methods returning classes 1.362 0.883 1.840 | 0.801

Figure 9: 95% confidence intervals for power law exponents in Tomcat.

10

[4]

[5]

[6]

[7]

Relationship Exponent | Lower 95% | Upper 95% r?
Number of Methods 1.013 0.799 1.228 | 0.854
Number of Fields 1.124 0.919 1.378 | 0.901
Number of Constructors 3.363 2.771 3.953 | 0.984
Subclasses 0.810 0.452 1.169 | 0.667
Interface Implementations 1.118 0.585 1.652 | 0.814
References to class as a member 1.267 0.410 2.124 | 0.881
Members of class type 1.371 0.446 2.296 | 0.881
References to class as a parameter 0.960 0.555 1.365 | 0.669
Parameter-type class references 1.480 1.110 1.850 | 0.864
References to class as return type 1.342 0.715 1.969 | 0.753
Methods returning classes 1.820 1.348 2.293 | 0.922

Figure 10: 95% confidence intervals for power law exponents in Ant.

ter, 3333 Coyote Hill Rd., Palo Alto, CA 94304,
2000.

Lada A. Adamic. Network Dynamics: The
World Wide Web. PhD thesis, Stanford, 2002.

Reka Albert, Albert-Liszlé Barabasi, and Ha-
woong Jeong. Scale-free characteristics of ran-
dom networks: the topology of the world-wide
web. Physica A, 281:69-77, 2000.

Reka Albert, Hawoong Jeong, and Albert-L&szl
Barabési. Error and attack tolerance of complex
networks. Nature, (406), July 2000.

J. Bieman and V. Murdock. Finding code on
the world wide web: a preliminary investigation.
In Proceedings of the First International Work-
shop on Source Code Analysis and Manipulation
(SCAM), Florence, Italy, November 2001.

L Briand, J Daly, and J Wust. A unified
framework for coupling measurement in object-
oriented systems. IEEE Transactions on Soft-
ware Engineering, 25(1):91-121, 1999.

L Briand, P Devanbu, and W Melo. An investi-
gation into coupling measures for C++. In Pro-
ceedings of the 19th International Conference on
Software Engineering (ICSE’97), pages 412-421,
Boston, USA, 1997.

[8]

[10]

[11]

[12]

[13]

11

A. Broder, R. Kumar, F. Maghoul, P. Ragha-
van, A. Rajagopalan, R. Stata, A. Tomkins, and
J. Wiener. Graph structure in the web. In Pro-
ceedings of the 9th World Wide Web Conference,
pages 309-320, Amsterdam, May 2000.

S Counsell, P Newson, and E Mendes. Archi-
tectural level hypothesis testing through reverse
engineering of object-oriented software. In Pro-
ceedings of the 8th International Workshop on
Program Comprehension (IWPC’2000), Limer-
ick, Ireland, pages 60-66, 2000.

R Harrison, S J Counsell, and R Nithi. Coupling
metrics for OO design. In IEEE International
Symposium on Software Metrics, pages 150-157,
Bethesda, Maryland, US, 1998.

M. Levene, T.I. Fenner, G. Loizou, and
R. Wheeldon. A stochastic model for the evolu-
tion of the web. Computer Networks and ISDN
Systems, 39:277-287, 2002.

R Najjar, S Counsell, G Loizou, and K Man-
nock. The role of constructors in the con-
text of refactoring object-oriented systems. In
Proceedings of the Tth Furopean Conference on
Software Maintenance and Reengineering, Ben-
evento, Italy, March, 2003.

Diarmuid O’Donoghue, Aine Leddy, James
Power, and John Waldron. Bi-gram analysis

[14]

[15]

[16]

[17]

[18]

[19]

of java bytecode sequences. In Principles and
Practice of Programming in Java, Trinity Col-
lege Dublin, June 2002.

L. Page, S. Brin, R. Motwani, and T. Winograd.
The pagerank citation ranking: Bringing order
to the web. Working paper, Department of Com-
puter Science, Stanford University, 1998.

Gopal Pandurangan, Prabhakar Raghavan, and
Eli Upfal. Using pagerank to characterize web
structure. In Proceedings of the 8th Annual In-
ternational Computing and Combinatorics Con-
ference (COCOON), 2002.

Alex Potanin. The fox - a tool for object graph
analysis. Technical report, Victoria University
of Wellington, 2002. BSc. Honours report.

Alex Potanin, James Noble, Marcus R. Frean,
and Robert Biddle. Scale-free geometry in
object-oriented programs. Submitted to CACM,
2003.

S. Valverde, R. Ferrer-Cancho, and R. V.
Sole. Scale-free networks from optimal design.
Condensed Matter Archive, cond-mat/0204344,
April 2002. Submitted to Europhysics Letters.

Richard Wheeldon, Mark Levene, and Nadav
Zin. Autodoc: A search and navigation tool for
web-based program documentation. In Poster
Proceedings of International World Wide Web
Conference, Honolulu, HI, 2002.

12

