
DbSurfer: A Search and Navigation Tool for

Relational Databases

Richard Wheeldon, Mark Levene and Kevin Keenoy

School of Computer Science and Information Systems
Birkbeck University of London

Malet St, London
WC1E 7HX, United Kingdom

{richard,mark,kevin}@dcs.bbk.ac.uk

Abstract. We present a new application for keyword search within rela-
tional databases, which uses a novel algorithm to solve the join discovery
problem by finding Memex-like trails through the graph of foreign key
dependencies. It differs from previous efforts in the algorithms used, in
the presentation mechanism and in the use of primary-key only database
queries at query-time to maintain a fast response for users.

Keywords: Relational Databases, Hidden Web, Search, Navigation, Memex,
Trails, DbSurfer, Join Discovery, XML

1 Introduction

“Future users of large data banks must be protected from having to know
how the data is organized in the machine (the internal representation).”

E. F. Codd [4]

We consider that for many users of modern systems, being protected from the
internal structures of pointers and hashes is insufficient. They also need to be
spared the requirement of knowing the logical structures of a company or of
its databases. For example, customers searching for information on a particular
product should not be expected to know the address at which the relevant data
is held. But neither should they be expected to know part numbers or table
names in order to access this data, as required when using SQL.

In 1945, Vannevar Bush envisaged a future machine called Memex which would
help the user build a “web of trails”. His seminal paper “As We May Think”
[3] first suggested the concept of a trail as a sequence of connected pages. This
concept is now well established in the hypertext community.

We have previously developed tools which automate trail discovery for provid-
ing users with navigational assistance and search facilities within web sites and



Javadocs [12]. These tools have been shown to enable users to find information
in less time, with fewer clicks, and with a higher degree of satisfaction [9].

Building on this work we have developed a tool called DbSurfer, which provides
an interface for extracting data from relational databases. This data is extracted
in the form of an inverted index and a graph, which can together be used to
construct trails of information, allowing free text search on the contents. The
free text search and database navigation facilities can be used directly, or can
be used as the foundation for a customized interface.

Recent work at Microsoft Research [1], the Indian Institute of Technology[7,11]
and the University of California [6] has resulted in several systems similar in
many ways to our own. However, the system we describe here differs greatly in
the design of the algorithms and in the style of the returned results. Our system
also offers the opportunity for integrating both web site and database content
with a common interface and for searching both simultaneously.

The rest of the paper is organized as follows. In Section 2 we describe our meth-
ods of indexing relational databases for keyword search. In Section 3 we describe
the algorithms for extending this to compute joins by building trails, and give
examples of the results achieved. Section 4 gives an overview of the system’s
architecture and Section 5 discusses the query options and syntax available to
users of DbSurfer. An extended version of this paper [14] gives further details
on the algorithm architecture. Further discussion of the metrics used and the
alternative applications of the trail metaphor can be found in the first author’s
thesis [12].

2 Indexing a Relational Database

A single relation (or table) is a set of rows each of which can be addressed by
some primary key. To index these rows we extract the data from each row in
turn and construct a virtual document or web page, which is indexed by our
parser. Since a relational database can be viewed as a special case of a more
general model of semistructured data and XML, it might not be suprising that
we can handle XML data using DbSurfer. Indeed that is all DbSurfer does! The
virtual documents are XML representations of relational tuples, compatible with
the emerging SQL/XML standard [5]. By combining the database reader with
our web crawler, XML documents discovered on web sites can be automatically
recognized as such and indexed in the same way, as can XML documents stored
in the database, thus increasing coverage. The entries in the posting lists provide
references to a servlet which produces a customized page for each row entry by
rebuilding the virtual document and applying an XLST stylesheet. The textual
content of each document is extracted and stored in an inverted file, such that
the posting lists contain normalized tf.idf entries as prescibed by Salton [10].
Attribute names are also indexed as individual keywords so that, for example,



the query “Anatomy of a search engine author” should return trails from the
Google anatomy paper [2] to the entries for Sergey Brin and Larry Page.

Answers to users’ queries may be spread over several tables, which must be
joined together. We can answer such queries with the help of a link graph. We
have shown how we can create an inverted file containing URLs, some of which
reference traditional web pages and some of which reference servlets which return
customized views of database content. All these URLs are assigned a separate
32-bit number which identifies them. It is these numbers which are stored in
the inverted file, and it is these numbers which are stored in the link graph.
The link graph is constructed by examining the foreign key constraints of the
database (either by accessing the data dictionary table or via the JDBC APIs)
and the data entries themselves. Each matching set of (table, attribute) pairs
where there is a recognized referential constraint generates a bi-directional link.

3 Computing Joins with Trails

Given a suitable link graph, we can utilise our navigation engine approach to
construct join sequences as trails. The navigation engine works in 4 stages. The
first stage is to calculate scores for each of the nodes matching one or more of the
keywords in the query, and isolate a small number of these for future expansion.
The second stage is to construct the trails using the Best Trail algorithm [13,12].
The third stage involves filtering the trails to remove redundant information. In
the fourth and final stage, the navigation engine computes small summaries of
each page or row and formats the results for display in a web browser.

Selection of starting points is done by combining the tf.idf scores for each node
with a ranking metric called potential gain, which rates the navigation potential
of a node in a graph based upon the number of trails available from it. The
Best Trail algorithm takes the set of starting nodes as input and builds a set
of navigation trees, using each starting point as the root node. Two series of
iterations are employed for each tree using two different methods of probabilis-
tic node selection. Once a sufficient number of nodes have been expanded, the
highest ranked trail from each tree is selected. The subsequent set of trails is
then filtered and sorted. With appropriate choice of parameters, the Best Trail
algorithm can emulate the simpler best-first algorithm.

Trails are scored according to two simple metrics: the sum of the unique scores
of the nodes in the trail divided by the length plus a constant, and the weighted
sum of node scores, where weights are determined by the position in the trail, and
the number of repetitions of that node. These functions encourage non-trivial
trails, whilst discouraging redundant nodes.

Filtering takes place using a greedy algorithm and removes any sequences of
redundant nodes which may be present in the trail. Redundant nodes are nodes



which are either deemed to be of no relevance to the query or replicate content
found in other nodes.

Once they have been filtered and sorted, the trails are returned to the user
and presented in our NavSearch interface, the two main elements of which are
a navigation tool bar comprising of a sequence of URLs (the “best trail”) and
a navigation tree window with the details of all the trails. Figure 1 shows how
trails would be presented in the navigation tree window as a response to the
question “vannevar bush” on a database generated from the DBLP data set.
The content of any row can be examined in an adjacent frame by clicking on any
likely looking entry or by examining the summary data in the enhanced tooltips.

As a preliminary evaluation of DbSurfer’s

Fig. 1. Trails given by DbSurfer
for the query “vannevar bush”.

performance, we ran two experiments on the
DBLP corpus. In the first experiment, we
selected 20 papers from the DBLP corpus,
and constructed 20 queries by taking the sur-
name of the first author and 1, 2 or 3 sig-
nificant keywords with which a user might
expect to identify that paper. We submit-
ted these queries to DbSurfer for evaluation.
We also submitted them to BANKS (Brows-
ing ANd Keyword Search in relational databases)
[7] and CiteSeer [8] for comparison. The key
result found was that DbSurfer performed
well (and outperformed BANKS and Cite-
seer) in finding requested references. The sec-
ond experiment provided a closer analysis
of the times taken is computing the results.
Computing scores for nodes takes around 50%
of the total processing time, with the trail
finding taking around 30%, computing the
text summaries around 15% and filtering re-
dundant information around 2%, with the
remainder being taken up by system over-
head, XML transformation and presentation.
Increasing the number of keywords causes a
limited increase in the time to compute page scores, but this impact is dwarfed
by other factors. One other interesting result is that as the number of keywords
increases so does the fraction of nodes in the returned trails which are distinct
within the entire trailset. Only extensive user testing will confirm whether this
is a positive feature.



4 Architecture

Conventional web search engines usually use an architecture pattern comprising
three components - a robot or crawler, an indexer and a query engine. We extend
this design by augmenting the information retrieval engine with our trail finding
system. and combining the crawler with the database reader. A key difference
betweeen the DbSurfer and a conventional search engine is that a search engine
traditionally returns links to pages which are logically and physically separated
from the pages of the servers performing the query operations, whereas the
links returned by the DbSurfer refer mostly to the row display servlet we have
described.

Figure 2 shows the basic archi-

Crawler
/ Robot

Parser

Query
Engine

Web Site(s)

Index
Builder

HTML Page Features

Words

tf.idf

Inverted File
tf.

id
f

DB
Reader virtual pages

Relational
Database

raw data

WebGraph

lin
ks



links

URLs

User

HTML Pag
e

Display
Servlet

Nav
Search

HTML Page

HTM
L Page

Page Scores

raw data

Trail
Engine

Trails

links

Keywords

Keywords

Fig. 2. Architecture of DbSurfer.

tecture. The database content
is retrieved by the DB Reader
when the index is built and by
the display servlet when exam-
ining the constructed trails. The
DB Reader selects all the ac-
cessible tables and views, and
asks the administrator which of
these should be indexed. The
program then extracts the ref-
erential constraints for all of the
selected tables and generates a
lookup table. This is kept sep-
arate from the main index and
is used by both the DB Reader
and the display servlet.

5 Query Expressiveness

We have extended the search engine style query syntax to support an attribute
container operation using the “=” sign. The construct x = y means that an
attribute y must be contained in an XML tag x. For example, the query “Si-
mon” might return publications relating to Simon’s probabilistic model as well
as articles by authors named Simon. The query author=simon would restrict the
returned entries to those contained in an XML attribute 〈author〉, which trans-
lates to those in the author table. i.e. publications written by authors named
Simon. The search engine query operations such as +, - and link: still remain
supported with this extension. By default, we provide trails which answer dis-
junctive queries, with preference for results containing as many keywords as
possible (conjunctive).



6 Concluding Remarks

We have presented DbSurfer - a system for keyword search and navigation
through relational databases. DbSurfer’s unique feature is a novel join discov-
ery algorithm which discovers Memex-like trails though the graph of foreign-to-
primary key dependencies. DbSurfer allows queries to be answered efficiently,
providing relevant results without relying on a translation to SQL. We hope
that the work will be continued by improving the user interface, allowing effec-
tive handling of numerical queries and addressing the security implications of
the current architecture.

References

1. Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. Dbxplorer: A system for
keyword-based search over relational databases. In Proceedings of IEEE Interna-
tional Conference on Data Engineering, pages 5–16, 2002.

2. S. Brin and L. Page. The anatomy of a large-scale hypertextual web search en-
gine. In Proceedings of International World Wide Web Conference, pages 107–117,
Brisbane, 1998.

3. Vannevar Bush. As we may think. Atlantic Monthly, 76:101–108, 1945.
4. E. F. Codd. A relational model of data for large shared data banks. Communica-

tions of the ACM, 13(6):377–387, 1970.
5. Andrew Eisenberg and Jim Melton. SQL/XML is making good progress. SIGMOD

Record, 31(2):101–108, 2002.
6. Vagelis Hristidis and Yannis Papakonstantinou. Discover: Keyword search in rela-

tional databases. In Proceedings of the 28th VLDB Conference, Hong Kong, 2002.
7. Arvind Hulgeri, Gaurav Bhaltoia, Charuta Nakhe, Soumen Chakrabarti, and S. Su-

darshan. Keyword search in databases. Bulletin of the Technical Committee on
Data Engineering. Special Issue on Imprecise Queries, 24(3):22–32, 2001.

8. Steve Lawrence, Kurt Bollacker, and C. Lee Giles. Indexing and retrieval of scien-
tific literature. In Eighth International Conference on Information and Knowledge
Management, CIKM 99, pages 139–146, Kansas City, Missouri, November 1999.

9. Mazlita Mat-Hassan and Mark Levene. Can navigational assistance improve search
experience: A user study. First Monday, 6(9), 2001.

10. Gerard Salton and Chris Buckley. Term weighting approaches in automatic text
retrieval. Information Processing and Management, 24:513–523, 1998.

11. N. L. Sarda and Ankur Jain. Mragyati : A system for keyword-based searching in
databases. Computing Research Repository, cs.DB/0110052, 2001.

12. Richard Wheeldon. A Web of Trails. PhD thesis, Birkbeck University of London,
October 2003.

13. Richard Wheeldon and Mark Levene. The best trail algorithm for adaptive navi-
gation in the world-wide-web. In Proceedings of 1st Latin American Web Congress,
Santiago, Chile, November 2003.

14. Richard Wheeldon, Mark Levene, and Kevin Keenoy. Search and navigation in
relational databases. Computing Research Repository, cs.DB/0307073, July 2003.


